
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 15 – Program Design (cont)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• The range() function

• Using for loops

– Using for loops and range()

– Difference between for and while loops

2

String Manipulation

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Motivation

• We’ve talked a lot about certain ‘good habits’
we’d like you all to get in while writing code

–What are some of them?

• There are two main reasons for these habits

–Readability

–Adaptability

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

“Good Code” – Readability

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability

• Having your code be readable is important,
both for your sanity and anyone else’s

– Your TA’s sanity is very, very, very important

• Having highly readable code makes it easier to:

– Figure out what you’re doing while writing the code

– Figure out what the code is doing when you come
back to look at it a year later

– Have other people read and understand your code

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Improving Readability

• Improving readability of your code can be
accomplished in a number of ways

– Comments

– Meaningful variable names

– Breaking code down into functions

– Following consistent naming conventions

– Programming language choice

– File organization

7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• What does the following code snippet do?
def nS(p,c):

l=len(p)

if l>=4:

c+=1

print(p)

if l>=9:

return p

#FUNCTION CONTINUES...

• There isn’t much information to go on, is there?

8

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• What if I used meaningful variable names?
def nS(p,c):

l=len(p)

if l>=4:

c+=1

print(p)

if l>=9:

return p

#FUNCTION CONTINUES...

9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• What if I used meaningful variable names?
def nextState(password,count):

length=len(password)

if length>=4:

count+=1

print(password)

if length>=9:

return password

#FUNCTION CONTINUES...

10

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• And replaced the magic numbers with constants?
def nextState(password,count):

length=len(password)

if length>=4:

count+=1

print(password)

if length>=9:

return password

#FUNCTION CONTINUES...

11

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• And replaced the magic numbers with constants?
def nextState(password,count):

length=len(password)

if length>=MIN_LENGTH:

count+=1

print(password)

if length>=MAX_LENGTH:

return password

#FUNCTION CONTINUES...

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• And added horizontal space?
def nextState(password,count):

length=len(password)

if length>=MIN_LENGTH:

count+=1

print(password)

if length>=MAX_LENGTH:

return password

#FUNCTION CONTINUES...

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• And added horizontal space?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

FUNCTION CONTINUES...

14

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

FUNCTION CONTINUES...

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

FUNCTION CONTINUES...

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• Maybe even some meaningful comments?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

FUNCTION CONTINUES...

17

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• Maybe even some meaningful comments?
def nextState(password, count):

length = len(password)

if long enough, count as a password

if length >= MIN_LENGTH:

count += 1

print(password)

if max length, don't do any more

if length >= MAX_LENGTH:

return password

FUNCTION CONTINUES...

18

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• Now the purpose of the code is a bit clearer!

– You can see how small, simple changes increase
the readability of a piece of code

• This is actually part of a function
that creates a list of the possible
passwords for a swipe-based login
system on an Android smart phone

• Dr. Gibson co-wrote a paper on this, available here

19

http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted20

Commenting

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Commenting is an “Art”

• Though it sounds pretentious, it’s true

• There are NO hard and fast rules for when a
piece of code should be commented

– Only guidelines

– NOTE: This doesn’t apply to required comments
like file headers and function headers!

21

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

General Guidelines

• If you have a complex conditional, give a brief
overview of what it accomplishes
check if car fits customer criteria

if color == "black" and int(numDoors) > 2 \

and float(price) < 27000:

• If you did something you think was clever,
comment that piece of code

– So that “future you” will understand it!

22

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

General Guidelines

• Don’t write obvious comments
iterate over the list

for i in range(len(myList)):

• Don’t comment every line
initialize the loop variable

choice = 1

loop until user chooses to quit

while choice != QUIT:

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

General Guidelines

• Do comment “blocks” of code

calc tip and total (set min for large parties)

percent = float(input("Enter tip percent: ")

if numGuests > LARGE_PARTY and percent < MIN_TIP:

percent = MIN_TIP

print("There is a minimum tip of", MIN_TIP, \

"for large parties")

tip = bill * percent

total = bill + tip

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

General Guidelines

• Do comment nested loops and conditionals
listFib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

listPrime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

check to see if each fibonacci number

is also in the prime number list

for f in range(len(listFib)):

for p in range(len(listPrime)):

if (listFib[f] == listPrime[p]):

print(listFib[f], "is both a prime",

"and a Fibonacci number!")

25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

General Guidelines

• Do comment very abbreviated variables names
(especially those used for constants)

– You can even put the comment at the end of the line!
As long as the comment won’t wrap around

MIN_CH = 1

MAX_CH = 5

MENU_EX = 5

P1_MARK = "x"

P2_MARK = "o"

26

minimum choice at menu

maximum choice at menu

menu choice to exit (stop)

player 1's marker

player 2's marker

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted27

“Good Code” – Adaptability

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Adaptability

• Often, what a program is supposed to do
evolves and changes as time goes on

– Well-written flexible programs can be easily
altered to do something new

– Rigid, poorly written programs often take a lot of
work to modify

• When coding, keep in mind that you might
want to change or extend something later

28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Adaptability: Example

• Here is an example of a poorly modular function

29

Bad:

def makeSquareGrid():

grid = []

row = []

for i in range(10):

row.append(0)

for i in range(10):

grid.append(row[:])

return grid

How can we improve
this function to be more
modular and adaptable?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Adaptability: Example

• Let’s make the size of the grid a parameter

30

Good:

def makeSquareGrid(size):

grid = []

row = []

for i in range(size):

row.append(0)

for i in range(size):

grid.append(row[:])

return grid

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Adaptability: Example

• And let’s add the element as a parameter too

31

Better:

def makeSquareGrid(size, elem):

grid = []

row = []

for i in range(size):

row.append(elem)

for i in range(size):

grid.append(row[:])

return grid

How could we
adjust this to allow
non-square grids?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted32

Incremental Development

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

What is Incremental Development?

• Developing your program in small increments

1. Program a small piece of the program

2. Run and test your program

3. Ensure the recently written code works

4. Address any errors and fix any bugs

5. Return to step 1

33

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Use Incremental Development?

• Incremental development:

–Makes a large project more manageable

– Leads to higher quality code

–Makes it easier to find and correct errors

– Is faster for large projects

• May seem like you’re taking longer since you
test at each step, but faster in the long run

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Debugging Woes

• Writing code is easy...

• Writing code that works correctly is HARD

• Sometimes the hardest part of debugging is
finding out where the error is coming from

– And solving it is the easy part (sometimes!)

• If you only wrote one function since the last
run, start by looking there for the error

35

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Alan Turing

– Helped to break the German
Engima cipher during WWII

– Proposed the “Turing test” to
measure artificial intelligence

– Turing “machines”

– Designed the first computer
chess program in 1953

– Sadly, a persecuted gay man

36

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcement: Advising

• CMSC and CMPE students, sign up for an
advising appointment.

– http://advising.coeit.umbc.edu/registration/

• Select that you are in MATH 150 or higher and
haven't completed the gateway.

• There are both group advising and individual
advising appointments open. The earliest
dates available are for group advising.

37

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 1 is out on Blackboard now

– Project is due by Friday (Apr 5th) at 11:59:59 PM

• Functionality >> following submitted design

• Second midterm exam is April 15th and 16th

– April 17th and 18th (Wed/Thur of same week)

38

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Android password swipe:

– http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

• Alan Turing:
– https://en.wikipedia.org/wiki/File:Alan_Turing_Aged_16.jpg

39

