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CMSC201
Computer Science I for Majors

Lecture 15 – Program Design (cont)
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Last Class We Covered

• The range() function

• Using for loops

– Using for loops and range()

– Difference between for and while loops
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String Manipulation
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Any Questions from Last Time?
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Motivation

• We’ve talked a lot about certain ‘good habits’ 
we’d like you all to get in while writing code

–What are some of them?

• There are two main reasons for these habits

–Readability

–Adaptability
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“Good Code” – Readability
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Readability

• Having your code be readable is important, 
both for your sanity and anyone else’s

– Your TA’s sanity is very, very, very important

• Having highly readable code makes it easier to:

– Figure out what you’re doing while writing the code

– Figure out what the code is doing when you come 
back to look at it a year later

– Have other people read and understand your code

6
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Improving Readability

• Improving readability of your code can be 
accomplished in a number of ways

– Comments

– Meaningful variable names

– Breaking code down into functions

– Following consistent naming conventions

– Programming language choice

– File organization

7
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Readability Example

• What does the following code snippet do?
def nS(p,c):

l=len(p)

if l>=4:

c+=1

print(p)

if l>=9:

return p

#FUNCTION CONTINUES...

• There isn’t much information to go on, is there?

8
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Readability Example

• What if I used meaningful variable names?
def nS(p,c):

l=len(p)

if l>=4:

c+=1

print(p)

if l>=9:

return p

#FUNCTION CONTINUES...
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Readability Example

• What if I used meaningful variable names?
def nextState(password,count):

length=len(password)

if length>=4:

count+=1

print(password)

if length>=9:

return password

#FUNCTION CONTINUES...
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Readability Example

• And replaced the magic numbers with constants?
def nextState(password,count):

length=len(password)

if length>=4:

count+=1

print(password)

if length>=9:

return password

#FUNCTION CONTINUES...
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Readability Example

• And replaced the magic numbers with constants?
def nextState(password,count):

length=len(password)

if length>=MIN_LENGTH:

count+=1

print(password)

if length>=MAX_LENGTH:

return password

#FUNCTION CONTINUES...
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Readability Example

• And added horizontal space?
def nextState(password,count):

length=len(password)

if length>=MIN_LENGTH:

count+=1

print(password)

if length>=MAX_LENGTH:

return password

#FUNCTION CONTINUES...
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Readability Example

• And added horizontal space?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

# FUNCTION CONTINUES...
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Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

# FUNCTION CONTINUES...
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Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

# FUNCTION CONTINUES...
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Readability Example

• Maybe even some meaningful comments?
def nextState(password, count):

length = len(password)

if length >= MIN_LENGTH:

count += 1

print(password)

if length >= MAX_LENGTH:

return password

# FUNCTION CONTINUES...
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Readability Example

• Maybe even some meaningful comments?
def nextState(password, count):

length = len(password)

# if long enough, count as a password

if length >= MIN_LENGTH:

count += 1

print(password)

# if max length, don't do any more

if length >= MAX_LENGTH:

return password

# FUNCTION CONTINUES...

18



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Readability Example

• Now the purpose of the code is a bit clearer!

– You can see how small, simple changes increase 
the readability of a piece of code

• This is actually part of a function 
that creates a list of the possible 
passwords for a swipe-based login 
system on an Android smart phone

• Dr. Gibson co-wrote a paper on this, available here

19

http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
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Commenting



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Commenting is an “Art”

• Though it sounds pretentious, it’s true

• There are NO hard and fast rules for when a 
piece of code should be commented

– Only guidelines

– NOTE: This doesn’t apply to required comments 
like file headers and function headers!

21
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General Guidelines

• If you have a complex conditional, give a brief 
overview of what it accomplishes
# check if car fits customer criteria

if color == "black" and int(numDoors) > 2 \

and float(price) < 27000:

• If you did something you think was clever, 
comment that piece of code

– So that “future you” will understand it!

22
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General Guidelines

• Don’t write obvious comments
# iterate over the list

for i in range(len(myList)):

• Don’t comment every line
# initialize the loop variable

choice = 1

# loop until user chooses to quit

while choice != QUIT:

23
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General Guidelines

• Do comment “blocks” of code

# calc tip and total (set min for large parties)

percent = float(input("Enter tip percent: ")

if numGuests > LARGE_PARTY and percent < MIN_TIP:

percent = MIN_TIP

print("There is a minimum tip of", MIN_TIP, \

"for large parties")

tip   = bill * percent

total = bill + tip

24
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General Guidelines

• Do comment nested loops and conditionals
listFib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

listPrime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

# check to see if each fibonacci number 

# is also in the prime number list

for f in range(len(listFib)):

for p in range(len(listPrime)):

if (listFib[f] == listPrime[p]):

print(listFib[f], "is both a prime",

"and a Fibonacci number!")

25
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General Guidelines

• Do comment very abbreviated variables names 
(especially those used for constants)

– You can even put the comment at the end of the line!
As long as the comment won’t wrap around

MIN_CH = 1

MAX_CH = 5

MENU_EX = 5     

P1_MARK  = "x"

P2_MARK = "o"

26

# minimum choice at menu

# maximum choice at menu

# menu choice to exit (stop)

# player 1's marker

# player 2's marker
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“Good Code” – Adaptability
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Adaptability

• Often, what a program is supposed to do 
evolves and changes as time goes on

– Well-written flexible programs can be easily 
altered to do something new

– Rigid, poorly written programs often take a lot of 
work to modify

• When coding, keep in mind that you might 
want to change or extend something later

28
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Adaptability: Example

• Here is an example of a poorly modular function

29

Bad:

def makeSquareGrid():

grid = []

row  = []

for i in range(10):

row.append(0)

for i in range(10):

grid.append( row[:] )

return grid

How can we improve 
this function to be more 
modular and adaptable?
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Adaptability: Example

• Let’s make the size of the grid a parameter

30

Good:

def makeSquareGrid(size):

grid = []

row  = []

for i in range(size):

row.append(0)

for i in range(size):

grid.append( row[:] )

return grid
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Adaptability: Example

• And let’s add the element as a parameter too

31

Better:

def makeSquareGrid(size, elem):

grid = []

row  = []

for i in range(size):

row.append(elem)

for i in range(size):

grid.append( row[:] )

return grid

How could we 
adjust this to allow 
non-square grids?
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Incremental Development
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What is Incremental Development?

• Developing your program in small increments

1. Program a small piece of the program

2. Run and test your program

3. Ensure the recently written code works

4. Address any errors and fix any bugs

5. Return to step 1

33
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Why Use Incremental Development?

• Incremental development:

–Makes a large project more manageable

– Leads to higher quality code

–Makes it easier to find and correct errors

– Is faster for large projects

• May seem like you’re taking longer since you 
test at each step, but faster in the long run

34
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Debugging Woes

• Writing code is easy...

• Writing code that works correctly is HARD

• Sometimes the hardest part of debugging is 
finding out where the error is coming from

– And solving it is the easy part (sometimes!)

• If you only wrote one function since the last 
run, start by looking there for the error

35
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• Alan Turing

– Helped to break the German
Engima cipher during WWII

– Proposed the “Turing test” to 
measure artificial intelligence

– Turing “machines”

– Designed the first computer
chess program in 1953

– Sadly, a persecuted gay man

36
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Announcement: Advising

• CMSC and CMPE students, sign up for an 
advising appointment.

– http://advising.coeit.umbc.edu/registration/

• Select that you are in MATH 150 or higher and 
haven't completed the gateway.

• There are both group advising and individual 
advising appointments open. The earliest 
dates available are for group advising.

37
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Announcements

• Project 1 is out on Blackboard now

– Project is due by Friday (Apr 5th) at 11:59:59 PM

• Functionality >> following submitted design

• Second midterm exam is April 15th and 16th

– April 17th and 18th (Wed/Thur of same week)

38
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Image Sources
• Android password swipe:

– http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

• Alan Turing:
– https://en.wikipedia.org/wiki/File:Alan_Turing_Aged_16.jpg
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